在Python中,为了解决内存泄露问题,采用了对象引用计数,并基于引用计数实现自动垃圾回收。
由于Python 有了自动垃圾回收功能,就造成了不少初学者误认为不必再受内存泄漏的骚扰了。但如果仔细查看一下Python文档对 __del__() 函数的描述,就知道这种好日子里也是有阴云的。下面摘抄一点文档内容如下:
Some common situations that may prevent the reference count of an object from going to zero include: circular references between objects (e.g., a doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the stack frame of a function that caught an exception (the traceback stored in sys.exc_traceback keeps the stack frame alive); or a reference to the object on the stack frame that raised an unhandled exception in interactive mode (the traceback stored in sys.last_traceback keeps the stack frame alive).
可见,有 __del__() 函数的对象间的循环引用是导致内存泄漏的主凶。但没有__del__()函数的对象间的循环引用是可以被垃圾回收器回收掉的。
如何知道一个对象是否内存泄露掉了呢?
可以通过Python的扩展模块gc来查看不能回收掉的对象的详细信息。
例
例1:没有出现内存泄露的
import gcimport sysclass CGcLeak(object): def __init__(self): self._text = '#' * 10 def __del__(self): passdef make_circle_ref(): _gcleak = CGcLeak() print "_gcleak ref count0: %d" %(sys.getrefcount(_gcleak)) del _gcleak try: print "_gcleak ref count1 :%d" %(sys.getrefcount(_gcleak)) except UnboundLocalError: # 本地变量xxx引用前没定义 print "_gcleak is invalid!"def test_gcleak(): gc.enable() #设置垃圾回收器调试标志 gc.set_debug(gc.DEBUG_COLLECTABLE | gc.DEBUG_UNCOLLECTABLE | gc.DEBUG_INSTANCES | gc.DEBUG_OBJECTS) print "begin leak test..." make_circle_ref() print "\nbegin collect..." _unreachable = gc.collect() print "unreachable object num:%d" %(_unreachable) print "garbage object num:%d" %(len(gc.garbage)) #gc.garbage是一个list对象,列表项是垃圾收集器发现的不可达(即垃圾对象)、但又不能释放(不可回收)的对象,通常gc.garbage中的对象是引用对象还中的对象。因Python不知用什么顺序来调用对象的__del__函数,导致对象始终存活在gc.garbage中,造成内存泄露 if __name__ == "__main__": test_gcleak()。如果知道一个安全次序,那么就可以打破引用焕,再执行del gc.garbage[:]从而清空垃圾对象列表if __name__ == "__main__": test_gcleak()
结果
begin leak test..._gcleak ref count0: 2 #对象_gcleak的引用计数为2_gcleak is invalid! #因为执行了del函数,_gcleak变为了不可达的对象begin collect... #开始垃圾回收unreachable object num:0 #本次垃圾回收发现的不可达的对象个数为0garbage object num:0 #整个解释器中垃圾对象的个数为0
结论是对象_gcleak的引用计数是正确的,也没发生内存泄漏。
例2:对自己的循环引用造成内存泄露
import gcimport sysclass CGcLeak(object): def __init__(self): self._text = '#' * 10 def __del__(self): passdef make_circle_ref(): _gcleak = CGcLeak() _gcleak._self = _gcleak #自己循环引用自己 print "_gcleak ref count0: %d" %(sys.getrefcount(_gcleak)) del _gcleak try: print "_gcleak ref count1 :%d" %(sys.getrefcount(_gcleak)) except UnboundLocalError: print "_gcleak is invalid!"def test_gcleak(): gc.enable() gc.set_debug(gc.DEBUG_COLLECTABLE | gc.DEBUG_UNCOLLECTABLE | gc.DEBUG_INSTANCES | gc.DEBUG_OBJECTS) print "begin leak test..." make_circle_ref() print "\nbegin collect..." _unreachable = gc.collect() print "unreachable object num:%d" %(_unreachable) print "garbage object num:%d" %(len(gc.garbage))if __name__ == "__main__": test_gcleak()
结果
begin leak test...gc: uncollectable_gcleak ref count0: 3_gcleak is invalid!gc: uncollectable begin collect...unreachable object num:2 #本次回收不可达的对象个数为2garbage object num:1 #整个解释器中垃圾个数为1
例3:多个对象间的循环引用造成内存泄露
import gcimport sysclass CGcLeakA(object): def __init__(self): self._text = '$' * 10 def __del__(self): passclass CGcLeakB(object): def __init__(self): self._text = '$' * 10 def __del__(self): passdef make_circle_ref(): _a = CGcLeakA() _b = CGcLeakB() _a.s = _b _b.d = _a print "ref count0:a=%d b=%d" %(sys.getrefcount(_a), sys.getrefcount(_b)) del _a del _b try: print "ref count1:a%d" %(sys.getrefcount(_a)) except UnboundLocalError: print "_a is invalid!"def test_gcleak(): gc.enable() gc.set_debug(gc.DEBUG_COLLECTABLE | gc.DEBUG_UNCOLLECTABLE | gc.DEBUG_INSTANCES | gc.DEBUG_OBJECTS) print "begin leak test..." make_circle_ref() print "\nbegin collect..." _unreachable = gc.collect() print "unreachable object num:%d" %(_unreachable) print "garbage object num:%d" %(len(gc.garbage))if __name__ == "__main__": test_gcleak()
结果
begin leak test...ref count0:a=3 b=3_a is invalid!begin collect...unreachable object num:4garbage object num:2gc: uncollectablegc: uncollectable gc: uncollectable gc: uncollectable
结论
Python 的 gc 有比较强的功能,比如设置 gc.set_debug(gc.DEBUG_LEAK) 就可以进行循环引用导致的内存泄露的检查。如果在开发时进行内存泄露检查;在发布时能够确保不会内存泄露,那么就可以延长 Python 的垃圾回收时间间隔、甚至主动关闭垃圾回收机制,从而提高运行效率。
有待于深入研究的知识:
参考: